• slide1
  • slide2
  • slide3

The electronics/displays and photovoltaic (PV) sectors are massively growing industries with sales worth > €3 trillion and €100 billion, respectively. Of strategic importance, they are major contributors to EU GDP. Despite their many positive impacts, these industries face threats of: (i) sustainability of growth in terms of raw materials, energy and environment and (ii) competitive threat from Asia. The mainstream Transparent Conducting Oxide
(TCO) is Indium Tin Oxide (ITO). Without ITO the manufacture of displays and PV cells is not possible owing to the unique twin properties of ITO thin films: metal-like electrical conductivity and glass-like light transparency.

This makes ITO absolutely essential in the manufacture of displays and PV cells. The massive industrial growth rates and hence, high demand for ITO comes with substantial problems: high cost of ITO electrode production due to high demand and high price of indium and control of indium resources by China. To counter the above mentioned threats, the EU industry requires the replacement of ITO with lower cost and readily available metals. This is urgently needed to sustain EU solar, displays and electronics industries growth and freedom from Chinese control of these essential raw materials (especially since China is starting to curb rare earth and indium metal exports which is leading to price increases in these materials). By lowering the raw material costs, the AltiTude project also distribute great improvements to the SME participants and to EU industry offering competitive advantage. AltiTude delivers ITO alternative multi transparent conducting oxides (m-TCO) with performance equal or even better than ITO. In AltiTude m-TCOs, the indium is replaced with lower cost and more readily available metals such as Galium, Zinc and Tin. The result would be an enormous reduction in industry costs and a great increase in sustainability for electronics, displays and solar industries.